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Abstract

We compare various value functions used in generative adversarial
networks (GAN) and the shift from a maximum likelihood approach to
metrics on the space of probability measures. Specifically, we study the
Cramér GAN and WGAN, examining how they incorporate their asso-
ciated metrics into the GAN framework, how they deal with the issues
caused bymaximum likelihood value functions and the assumptions they
implicitly make.

1 Introduction

Generative models differ from discriminative models by using a dataset to
model the probability distribution of the dataset instead of focusing solely
on class prediction. While generative models can be used for classification
tasks, they also allow, in certain cases, for the generation of new samples that
resemble the provided dataset. Significant improvements have been made
to models with the latter goal in recent years. In fact, the faces they are
capable of generating have become almost indistinguishable 1 from real faces
and are no longer the low resolution, noisy mess they once were. However,
for much of the history of machine learning, such generative models were
typically overlooked in favor of models designed for classification.

1Easily accessible examples are available on https://thispersondoesnotexist.com/
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2 Original GAN

2.1 Model Structure

Nonetheless, the fate of this subset of machine learning changed drastically
with the seminal2 paper on generative adversarial networks (GAN) [7]. In-
stead of directly attempting to approximate the underlying probability dis-
tribution, they instead model the problem as a game between two agents (a
generator and a discriminator). The former takes as input a random vector z
and outputs a new data pointG(z) while the latter takes as input a data point
(either x or G(z)) and outputs its estimate of the probability that its input is
an actual data point (either D(x) or D(G(z))).

The goal of the generator is to generate sample points that are indistinguish-
able from those of the original dataset. The discriminator, on the other hand,
seeks to learn to do the exact opposite (i.e. to distinguish real from generated
points). Consider the analogy of an art forger given a series of paintings by
a famous artist and an art collector. The art forger is then given a random
object, say a chair, and must paint that chair following the style of the famous
artist in such a way that the art collector is convinced of its authenticity.

More formally, the goals of the agents are encoded in the game through the
value function and its associated payoffs. For a given generator G and dis-
criminator D, the value function is defined as

V (D,G) = Ex∼px [logD(x)] + Ez∼pz [log(1−D(G(z)))]

where z is some random noise vector (from some predefined distribution pz)
and px is the true distribution of the dataset. Both D and G consist of neural
networks parametrized by θG and θD respectively. This value function uses the
maximum likelihood approach which is pervasive in machine learning.

2.2 Game Theory Interpretation

As the value function measures how right the discriminator is, it clearly wants
to maximize the value function while the generator wants to minimize it.
Thus, by setting the payoff of the discriminator to be the output of the value
function and the payoff for the generator to be its negation, we encode their

2While the originality of the idea of adversarial networks is contested (see [13] and "Pre-
dictabality Maximization") its impact on the field is undeniable.
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goals and create a 2-player zero-sum game.

For such games, Nash equilibria are known to correspond to each player using
their safety strategy [15] (i.e. the strategy that maximizes their payoff given
that the other player wants to minimize it) and hence

G∗ = argmin
G

max
D

V (D,G)

D∗ = argmax
D

min
G
V (D,G)

corresponds to a mixed Nash equilibrium with value

min
G

max
D

V (D,G) = max
D

min
G
V (D,G)

Interestingly, Goodfellow et al. never refer to Nash equilibria in the original
paper (even though they explicitly model the problem as a minimax game).
They even go as far as proving that solving the above yields a value of log(1

2
)+

log(1
2
) for the generator.

This value is attained precisely when the generator, given the distribution pz
yields a distribution G(pz) that perfectly matches px. Thus the discriminator
is forced to assign probability 1

2
to every sample given to it. However, this

value is refered to as a global minimum and it is not until the tutorial [6] that
they mention that it corresponds to a Nash equilibrium.

To reach this Nash equilibrium, the GAN trains both models simultaneously
using batch gradient descent. m random vectors are sampled from pz and
run through the generator while m samples are chosen randomly from the
dataset. The value function is computed for the sample and then both set of
parameters are updated using the gradient of the value functions.

3 Kantorovich-Wasserstein metric

Before proceeding further a quick note on nomenclature is necessary. Through-
out the papers referenced here, the distance between 2 probability measures
P , Q given by

KWp(P,Q) = inf
π∈Π(P,Q)

(∫
X×X

d(x, y)pdπ

) 1
p
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where Π(P,Q) is the set of all couplings has been called the Wasserstein dis-
tance, theMallow’s distance, the Earth-Mover’s distance, the KW distance and
different permutations of the above. As per Prakash Panangaden, an appro-
priate name would be the Kantorovich-Wasserstein (KW) distance and in this
paper it will be henceforth be referred to as such.

3.1 Definition and Model Structure

We now consider themore recent work [1, 2]. While bothmaintain the overall
structure of the GAN some fundamental changes are made to accommodate
their updated value function.

Arjovsky et al. begins by giving the usual definition of the KW metric (i.e. as
the infimum over couplings), while Bellemare et al. define the class of p-KW
metrics KWp (for 2 distributions P and Q) as:

KWp(P,Q) :=

(∫ 1

0

|F−1
P (u)− F−1

Q (u)|pdu
) 1

p

where F−1
P and F−1

Q are the inverse CDFs of P and Q respectively. While this
definition is perhaps more approachable, it also only applies to univariate
probability distributions [10] and as such is not as relevant for many of the
applications discussed in the paper (especially since most research around
GANs concerns image generation).

Nonetheless, both papers eventually give the equivalent dual definition (one
referring to it as Kantorovich-Rubinstein duality and the other as Kantorovich-
Monge duality):

KW (P,Q) = sup
||f ||L≤1

Ex∼P [f(x)]− Ex∼Q[f(x)]

Arjovsky et al. are quick to note the computational issues associated with
maximizing a quantity over the space of 1-Lipschitz functions.

To remedy this in theirWGAN, they creatively resort to using a neural network
to model the function f since any continuous function can be approximated
using an appropriate neural network structure [9]. This neural network, act-
ing as a critic is trained using the gradient of the associated estimated KW dis-
tance, its goal being to maximize Ex∼P [f(x)] − Ex∼Q[f(x)] and approximate
the function where the supremum is attained (exists, as shown in class).
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The use of a critic marks a departure from the original idea of GANs. Going
back to the analogy of the art forger and the art collector, we can now think of
the art collector as an art critic. Given the paintings of the forger he gives him
advice on how his paintings can be improved to better match the style of the
famous painter while simultaneously learning to give more accurate feedback.
In fact, the critic is now used to estimate the distance between the generated
distribution and the true distribution. In doing so, he provides gradients for
the generator to train (the advice in the analogy)

As for the Lipschitz constraint, in the first WGAN [1] it is enforced through
weight clipping of the parameters of the generator neural network. In a later
paper this is changed to the use of a gradient penalty [8] (the new model is
called WGAN-GP).

3.2 Issues with Approach

While the model performs well, an issue that is glossed over is the validity
of the estimate of the KW distance. For example, consider an initial gener-
ator G and a generator G′ obtained from G after one gradient descent step.
Seeing that G(pz) will not be equal to G′(pz), the function f that maximizes
Ex∼px [f(x)]−Ez∼pz [f(G(z))] will also conceivably be different from the func-
tion that maximizes Ex∼px [f(x)]− Ez∼pz [f(G′(z))].

Thus, at each training step, the WGAN critic is trying to estimate a different
function which could cause potential issues with its reliability as an estimator.
Combined with the fact that this estimate is a sample estimate of the distance
potentially explains why Arjovsky et al. train the critic more often than the
generator (5 steps for each gradient descent step of the generator). In the
same vein, experimental results from Bellemare et al. show that the gener-
ator performs much better when the critic is trained 5 times instead of 1 for
each step performed on the discriminator. While the experimental results are
promising, it would be helpful to have some bound on the accuracy of the
estimate of the distance.

A similar issue is found in [2] where they use a critic (i.e. get the function
f represented by the trained neural network) from WGAN-GP trained on the
same dataset. Once again, the accuracy of this estimate is not discussed and
is potentially more problematic than the previous case.
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In fact, in the previous example, we at least had that G′ is obtained from
G through one gradient descent step and thus could be assumed to be rea-
sonably close. Such an argument wouldn’t apply for the case of the Cramér
GAN. If such GANs are substantially different from WGANs, then it is even
more likely that the f that maximizes the estimate of KW distance for one
of the generators is different from the one that does the same for the other
generator.

Essentially, two results are needed/missing to guarantee the soundness of the
training procedure:

• Some bound of |Ex∼P [f(x)]−Ex∼Q[f(x)]−W (pG′ , px)| given that f is a
function that attains the supremum ofEx∼P [f(x)]−Ex∼Q∗ [f(x)] for some
other distributionQ∗. With such a bound, we could get some estimate of
the validity of training a critic function f on a dataset P and generator
G to then reuse this f to estimate the KW distance between some other
generator G′ and the same dataset P .

• Some result on the convergence of the critic to the true KW distance.
There is no result in either paper that indicates that performing gradient
descent with respect to their estimate of the distance would converge
to a global optimum (the true distance).

Nonetheless, the empirical results of Arjovsky et al. seem to indicate that, at
least in the setting it was used, their estimate of the KW distance is sound.
Indeed, one of the advantages they mention is the usefulness of their approx-
imate metric as a gauge of sample quality. They observe that the approximate
KW distance correlates well with visual quality of generated images, a prop-
erty not observed for other GAN losses based on maximum likelihood.

4 Cramér and Energy Distances

4.1 Definition

While WGAN performs well, Bellemare et al.’s propose the Cramér distance
(and its multi-dimensional analog, the energy distance) as an alternative to
the KW distance that doesn’t suffer from biased sample gradients. Simply put,
the Cramér distance is just the l22 distance between the respective cumulative
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distributions of P and Q [2]

l22(P,Q) :=

∫
R
(FP (x)− FQ(x))2dx

where FP is the CDF of P and FQ is the CDF of Q.

As for the energy distance, let X,X ′ ∼ P and Y, Y ′ ∼ Q be independent. The
energy distance between P and Q is then [2]

ε(P,Q) := ε(X, Y ) := 2E||X − Y ||2 − E||X −X ′||2 − E||Y − Y ′||2

with l22(P,Q) = 1
2
ε(P,Q) when P,Q are on R [14].

Interestingly, they comment on the simililarity of lp metrics and the KW met-
ric, specifically through the dual of the lp metrics, given by

lp(P,Q) = sup
f∈Fq
|Ex∼Pf(x)− Ex∼Qf(x)|

Since Fq is the set of absolutely continuous functions where || df
dx
||q ≤ 1 such

that 1
p

= 1
q

= 1, they state that for p = 1 (and thus q =∞) we have equivalence
of the lp metric and the KW metric.

4.2 Model Structure

Seeing that the sample energy function is tractable, the need for the use of the
GAN framework is less clear. It would be possible to dispense of the critic and
simply use the sample gradient of the energy function to update the param-
eters of the generator. Doing so would resemble a more traditional machine
learning model where the objective is simply

min
Gθ

ε(Gθ(z), P )

with P representing the underlying distribution of the dataset.

This possibility is not mentioned by Bellemare et al. and it would be useful
to see how well it would work. Instead, they use as critic a function (imple-
mented as a neural network) h(x) : Rd → Rk (with k < d) which performs
dimensionality reduction. The sample energy distance is computed using the
values that h maps the samples to, with h being trained to maximize the en-
ergy distance.
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Experimentally, the more they train h, the better the results, indicating that
maintaining the GAN framework is beneficial. However, this observation is
never justified mathematically.

5 Issues of the Original Value Function

While GANs can achieve impressive results, they are notorious for being in-
credibly hard to train (i.e. to get them to converge to some sensible genera-
tor). The two main issues plaguing GANs are as follows:

• Mode collapse, which corresponds to cases when the generator maps
most random vectors z ∼ pz to a single or a small amount of output
points. Such a generator is only capable of generating a few distinct
samples.

• Poor gradients impeding the training of the generator.

Arjovsky et al. argue that the choice of value function is to blame for these
issues which forms the basis of their use of the KW distance.

[7] doesn’t explicitly make the link between maximizing log-likelihood and
the Kullback-Leibler divergence (defined asKL(P ||Q) :=

∫
R log P (x)

Q(x)
P (x)dµ(x)).

However, as minimizing the KL divergence is equivalent to maximizing the
log-likelihood [5] (the value function used in [7]), both [1] and [2] compare
their metrics to the KL divergence.

For the issue of mode collapse, Arjovsky et al. do not observe it occuring in
any of their experiments. While they do not provide an explicit justification,
the intuition is fairly clear. When using the log-likelihood as a value function,
for a given discriminator, the generator is incentivized to always output the
point where D is maximized and never the other points in order to minimize
Ez∼pz log(1−D(G(z))).

However, when using the KW distance and considering the intuition of opti-
mal transport, it is clear that a generator that minimizes the KW distance will
not yield a distribution where all the probability mass is concentrated on a
single point or a few points (unless that is truly the underlying distribution)
since doing so does not minimize the optimal transport distance. Thus, it
is conceivable that using a WGAN would generally solve the issue of mode
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collapse.

As for the issue of gradients, problems arise when the discriminator is too
well trained. In such cases, the loss is close to 0 and has a very small gradient,
hindering the training of the generator. On the other hand, with a WGAN, we
have that training the critic only improves the estimate of the KW distance.
Hence, "excessive" training simply improves the estimate of the gradient and
the only reason the critic is not trained to optimality is due to computational
constraints.

Essentially, when using log-likelihood, training is a balancing act. If the dis-
criminator is not trained often enough, it remains relatively static in which
case the generator is prone to mode collapse. If it is trained too often, it will
become too accurate and no longer provide useful gradients.

Finally, in any case where P (x) = 0 while Q(x) > 0, the KL divergence is
infinite on top of being asymmetric. On the other hand, in cases of non-
overlapping supports, the KW metric is still defined and is symmetric as a
metric. As such, the use of the KW remedies many of the issues associated
with a maximum likelihood approach to loss.

6 Geometry of Outcomes

Embedded in the ability of the KW metric to solve these issues is the intuitive
advantage of the KW metric (as well as the Cramér/energy distance) over the
KL divergence. While the KL divergence is independent of the metric on the
space, the KW distance takes into account the "geometry of outcomes".

For example, given 2 Dirac random variables δ1 and δ1+x defined on R, we
have that KL(δ1, δ1+x) = ∞ for any x > 0. A similar issue exists for the
Jensen-Shannon divergence (another divergence mentionned in [1]). Using
the same example, we have that:

JS(δ1, δ1+x) =
1

2
[log(2) + log(2)] = log 2

for any 2 Dirac random variables with x > 0. However, intuitively, we would
want δ1 to be closer to δ1+x for x small (which is the case for the KW-distance
as it is proportional to the value of x).
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Bellemare et al. formalize this notion with a property they coin as scale sen-
sitivity (S) where a divergence d is considered scale sensitive if, ∃β > 0 such
that for all random variables X, Y and all c ∈ R+:

d(cX, cY ) ≤ |c|βd(X, Y )

While they cite [3] instead of proving the result ([3] only states the result,
presumably since it follows directly from the linearity of integration), it can be
seen that forRd with the Euclideanmetric and β = 1 the property holds:

Wp(cP, cQ) = inf
π∈Π(cP,cQ)

(∫
X×X

d(x, y)pdπ

) 1
p

= inf
π∈Π(P,Q)

(∫
X×X

d(cx, cy)pdπ

) 1
p

= inf
π∈Π(P,Q)

(∫
X×X

|c|pd(x, y)pdπ

) 1
p

= |c| inf
π∈Π(P,Q)

(∫
X×X

d(x, y)pdπ

) 1
p

= |c|Wp(P,Q)

They also describe the sum invariance property (I) which states that for A
independent of X and Y :

d(A+X,A+ Y ) ≤ d(X, Y )

Together, (S) and (I) yield what they call an "ideal divergence". Finally, the
last property they mention is unbiased sample gradients (U) with the main
contention being that the Cramér distance should be selected over the KW
distance since it has all three properties while the latter lacks (U). Notice that
the biased sample gradients are referring to an issue with the generator and
not the potential bias of the critic brought up earlier.

Specifically, they prove the bias exists for 2 Bernouilli distributions (P the
true distribution and Qθ, a Bernouilli distribution with parameter θ trained
using gradient descent) by finding a lower bound for the bias and showing
that Qθ doesn’t converge to the distribution that minimizes the KW distance.
It remains to see if the result holds generally for most distributions or if the
bias is restricted to cases of simple distributions (and if there are different
optimization techniques that avoid this issue).
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Finally, the 3 properties are shown for the Cramér (l2) and energy distances
(interestingly they show that (U) holds only for p = 2 and not the other lp
metrics) and are used to justify the statement that the Cramér/energy dis-
tance is "strictly superior" to the KW distance "for machine learning applica-
tions" [2]. While the statement is true with respect to the 3 properties, the
Cramér distance lacks other benefits of the KW distance (for example the in-
tuitive interpretation) and as such it would be unfair to describe it as strictly
better.

7 Conclusion

Ultimately, both the KW and Cramér distance provide improvements in terms
of stability and convergence to GANs relative to the original maximum like-
lihood value function. In doing so, they change the paradigm to one where
the second agent’s goal is to give an estimate of the distance between the
generator’s distribution and the true distribution (that takes into account the
underlying metric) while providing useful gradients for the training of the
generator.

It would be relevant to see how training a generator using just the gradient
of one of these loss functions (outside of the framework of a GAN) would
fare. Additionally, further research is needed to give theoretical validity (not
just experimental validity) to some of the estimation techniques used by both
papers.
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Appendix

7.1 Related Work

Included below are some other interesting papers related to [1, 2]:

Cuturi’s work [4] on Sinkhorn distances yields a much a quicker computation
of an approximation of the optimal transport distance. The associated algo-
rithm could be used to quickly evaluate generative models at different stages
(seeing that the KW distance is a good indication of visual quality sample) or
potentially even as critic.

Mao et al.’s work [11] on the Least Squares GAN (LSGAN) demonstrates an-
other attempt at incorporating a loss function that takes into account the
underlying geometry (albeit in a simpler manner). The resulting GAN shows
similar improvements as the WGAN (higher stability, better gradients and no
mode collapse).

Finally, Salimans et al.’s work [12] is particularly relevant as it combines ele-
ments of both papers by using a newmetric that corresponds to a combination
of the KWmetric (in primal form)with a learned energy distance with the goal
of "improving GANs using optimal transport".
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